Longest Even Odd Subarray With Threshold
This is the problem in which I went from brute force to optimised in two days using the algorithm design canvas I found here.
Brute Force
// 2760. Longest Even Odd Subarray With Threshold
#include <bits/stdc++.h>
using namespace std;
int longestAlternatingSubarray(vector<int> &nums, int T)
{
int largestSubarray = 0;
int n = nums.size();
// For dealing with single element edge case
if (nums.size() == 1)
{
if (nums[0] % 2 == 0 && nums[0] <= T)
return 1;
else
return 0;
}
for (int i = 0; i < n; i++)
{
if (nums[i] % 2 == 0 && nums[i] <= T)
{
// for dealing with the last element
if (nums[i] == nums[n - 1])
{
largestSubarray = max(largestSubarray, 1);
}
for (int j = i + 1; j < n; j++)
{
// when the the next element is within threshold T and
// is of alternate parity then count it
// and continue to the next iteration
if (nums[j] <= T && nums[j] % 2 != nums[j - 1] % 2)
{
largestSubarray = max(largestSubarray, j - i + 1);
continue;
}
else
{
// when the next element is not within threshold T or is not of alternate parity
// the window size becomes 1 and then we store it by comparing if it is the maximum
// or not
largestSubarray = max(largestSubarray, 1);
break;
}
}
}
}
return largestSubarray;
}
int main(){
int n;
cout << " n";
cin >> n;
int k;
cout << "k";
cin >> k;
vector<int> arr(n);
cout << "enter elements of array" << endl;
for (auto &it : arr)
{
cin >> it;
}
cout << longestAlternatingSubarray(arr, k);
return 0;
}
Optimized
// 2760. Longest Even Odd Subarray With Threshold
#include <bits/stdc++.h>
using namespace std;
int longestAlternatingSubarray(vector<int> &nums, int T)
{
int largestSubarray = 0;
int n = nums.size();
// two pointers indicating left and right of the window respectively
int i = 0, j = 0;
while (j < n)
{
// Step 1
/*
Check if the first number in
the subarray is even or not
Also it should lie in the threshold T
*/
if (nums[i] % 2 == 0 && nums[i] <= T)
{
// Edge Cases :
/*
When both i and j are equal
then the window size is one
move the window to the right
to increase its size (j++ or right++)
*/
if (i == j)
{
largestSubarray = max(largestSubarray, 1);
j++;
}
/*
If the element is the last one
recalculate the result without increasing
the size of the window
*/
else if (i == n - 1)
{
largestSubarray = max(largestSubarray, 1);
}
// Step 2
/*
Now if the next number is of alternate parity (even/odd)
then re-calculate the result and move the window ahead
to increase its size(j++ or right++) otherwise decrease the size
of the window (i++ or left++)
*/
else if (nums[j] <= T && nums[j] % 2 != nums[j - 1] % 2)
{
largestSubarray = max(largestSubarray, j - i + 1);
j++;
}
else
{
i++;
}
}
// Step 3:
/*
If the first number is odd there is no way
that the subarray is accounted but if the indexes are same (i==j)
then we would have to move the window(of size = 1 )
ahead by moving both right(j) and left(i) else only left(i) has to decrease size of window .
*/
else
{
if (i == j)
{
i++;
j++;
}
else
i++;
}
}
return largestSubarray;
}
int main()
{
int n;
cout << " n";
cin >> n;
int k;
cout << "k";
cin >> k;
vector<int> arr(n);
cout << "enter elements of array" << endl;
for (auto &it : arr)
{
cin >> it;
}
cout << longestAlternatingSubarray(arr, k);
return 0;
}